List of scientific publications where DocCreactor has been used
List of scientific publications where DocCreactor has been used |
Pack, C., Liu, Y., Soh, L. K., & Lorang, E. (2022). Augmentation-based Pseudo-Groundtruth Generation for Deep Learning in Historical Document Segmentation for Greater Levels of Archival Description and Access. ACM Journal on Computing and Cultural Heritage.
|
Vögtlin, L., Maergner, P., & Ingold, R. (2022). DIVA-DAF: A Deep Learning Framework for Historical Document Image Analysis. arXiv preprint arXiv:2201.08295.
|
Camps, J. B., & Couffignal, G. G. (2017). La production de corpus d’occitan médiéval et prémoderne: problèmes et perspectives de travail. Actes du XII\ieme {} Congrès International de l’Association Internatioale d’Études Occitanes, Albi, 2017.
|
Hamdi, A., Pontes, E. L., Sidere, N., Coustaty, M., & Doucet, A. (2022). In-depth analysis of the impact of OCR errors on named entity recognition and linking. Natural Language Engineering, 1-24.
|
Bui, Q. A., Mollard, D., & Tabbone, S. (2019, September). Automatic synthetic document image generation using generative adversarial networks: application in mobile-captured document analysis. In 2019 International Conference on Document Analysis and Recognition (ICDAR) (pp. 393-400). IEEE.
|
Huynh, V. N., Hamdi, A., & Doucet, A. (2020, November). When to Use OCR Post-correction for Named Entity Recognition?. In International Conference on Asian Digital Libraries (pp. 33-42). Springer, Cham.
|
Nguyen, N. K., Boroş, E., Lejeune, G., & Doucet, A. (2020, November). Impact analysis of document digitization on event extraction. In 4th workshop on natural language for artificial intelligence (NL4AI 2020) co-located with the 19th international conference of the Italian Association for artificial intelligence (AI* IA 2020) (Vol. 2735, pp. 17-28).
|
Linhares Pontes, E., Hamdi, A., Sidere, N., & Doucet, A. (2019, November). Impact of OCR quality on named entity linking. In International Conference on Asian Digital Libraries (pp. 102-115). Springer, Cham.
|
Hamdi, A., Jean-Caurant, A., Sidere, N., Coustaty, M., & Doucet, A. (2019, June). An Analysis of the Performance of Named Entity Recognition over OCRed Documents. In 2019 ACM/IEEE Joint Conference on Digital Libraries (JCDL) (pp. 333-334). IEEE.
|
Karpinski, R., & Belaïd, A. (2018, December). Combination of Two Fully Convolutional Neural Networks for Robust Binarization. In Asian Conference on Computer Vision (pp. 509-524). Springer, Cham.
|
Choi, K. Y., Coüasnon, B., Ricquebourg, Y., & Zanibbi, R. (2018). Music Symbol Detection with Faster R-CNN Using Synthetic Annotations.
|
Choi, K. Y., Coüasnon, B., Ricquebourg, Y., & Zanibbi, R. (2018). Music Symbol Detection with Faster R-CNN Using Synthetic Annotations.
|
Camps, J. B., & Couffignal, G. G. (2017, July). La production de corpus d'occitan médiéval et prémoderne. In Actes du XIIe Congrès de l’Association internationale d’études occitanes Albi, 2017
|
Liu, N., Zhang, D., Xu, X., Liu, W., Ke, D., Guo, L., ... Chen, L. (2017, November). An Iterative Refinement Framework for Image Document Binarization with Bhattacharyya Similarity Measure. In Document Analysis and Recognition (ICDAR), 2017 14th IAPR International Conference on (Vol. 1, pp. 93-98). IEEE. |
Roy, P. P., Bhunia, A. K., & Pal, U. (2017). HMM-based writer identification in music score documents without staff-line removal. Expert Systems with Applications, 89, 222-240.
Julca-Aguilar, F. D., \& Hirata, N. S. (2017). Image operator learning coupled with CNN classification and its application to staff line removal. arXiv preprint arXiv:1709.06476.
|
Calvo-Zaragoza, J., Pertusa, A., & Oncina, J. (2017). Staff-line detection and removal using a convolutional neural network. Machine Vision and Applications, 28(5-6), 665-674.
|
Garg, R., & Chaudhury, S. (2016, April). Automatic Selection of Parameters for Document Image Enhancement Using Image Quality Assessment. In Document Analysis Systems (DAS), 2016 12th IAPR Workshop on (pp. 422-427). IEEE.
|
Montagner, I. S., Hirata, N. S., Hirata, R., & Canu, S. (2016, September). NILC: a two level learning algorithm with operator selection. In Image Processing (ICIP), 2016 IEEE International Conference on (pp. 1873-1877). IEEE.
|
Montagner, I. S., Hirata, R., Hirata, N. S., & Canu, S. (2016, October). Kernel approximations for W-operator learning. In Graphics, Patterns and Images (SIBGRAPI), 2016 29th SIBGRAPI Conference on (pp. 386-393). IEEE.
|
Montagner, I. S., Hirata, N. S., & Hirata, R. (2016, October). Image operator learning and applications. In Graphics, Patterns and Images Tutorials (SIBGRAPI-T), SIBGRAPI Conference on (pp. 38-50). IEEE.
|
Baro, A., Riba, P., & Fornés, A. (2016, October). Towards the recognition of compound music notes in handwritten music scores. In 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) (pp. 465-470). IEEE.
|
Pastor-Pellicer, J., Garz, A., Ingold, R., & Castro-Bleda, M. J. (2015, August). Combining Learned Script Points and Combinatorial Optimization for Text Line Extraction. In Proceedings of the 3rd International Workshop on Historical Document Imaging and Processing (pp. 71-78). ACM.
|
Lagarrigue, M., Rossant, F., Pierrot, A., Gardes, J., Maldivi, C., & Petit, E. (2014, November). Assessing the quality of digital re-publishing of textual documents through the follow-up of a correction protocol by crowdsourcing. In Computational Intelligence for Multimedia Understanding (IWCIM), 2014 International Workshop on (pp. 1-5). IEEE.
|
Rabaev, I., Dinstein, I., El-Sana, J., & Kedem, K. (2014, October). Segmentation-free keyword retrieval in historical document images. In International Conference Image Analysis and Recognition (pp. 369-378). Springer, Cham.
|
dos Santos Montagner, I., Hirata, R., & Hirata, N. S. (2014, August). A machine learning based method for staff removal. In 2014 22nd International Conference on Pattern Recognition (ICPR) (pp. 3162-3167). IEEE.
|
Montagner, I. S., Hirata, R., & Hirata, N. S. (2014, October). Learning to remove staff lines from music score images. In Image Processing (ICIP), 2014 IEEE International Conference on (pp. 2614-2618). IEEE.
|
Géraud, T. (2014, October). A morphological method for music score staff removal. In Image Processing (ICIP), 2014 IEEE International Conference on (pp. 2599-2603). IEEE.
|
Fischer, A., Visani, M., Kieu, V. C., & Suen, C. Y. (2013, August). Generation of learning samples for historical handwriting recognition using image degradation. In Proceedings of the 2nd International Workshop on Historical Document Imaging and Processing (pp. 73-79). ACM.
|